Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x loge( loge x) - x2 + y2 = 4(y > 0), then dy/dx at x = e is equal to :
Q. If
x
lo
g
e
(
lo
g
e
x
)
−
x
2
+
y
2
=
4
(
y
>
0
)
, then
d
y
/
d
x
at
x
=
e
is equal to :
2684
254
JEE Main
JEE Main 2019
Continuity and Differentiability
Report Error
A
4
+
e
2
e
0%
B
2
4
+
e
2
(
1
+
2
e
)
20%
C
2
4
+
e
2
(
2
e
−
1
)
73%
D
4
+
e
2
(
1
+
2
e
)
7%
Solution:
Differentiating with respect to
x
,
x
.
ℓ
n
x
1
.
x
1
+
ℓ
n
(
ℓ
n
x
)
−
2
x
+
2
y
.
d
x
d
y
=
0
at
x
=
e
we get
1
−
2
e
+
2
y
d
x
d
y
=
0
⇒
d
x
d
y
=
2
y
2
e
−
1
⇒
d
x
d
y
=
2
4
+
e
2
2
e
−
1
y
=
(
e
)
=
4
+
e
2