Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x + log10(1+2x) = x log10 5 + log10 6 then the value of x is
Q. If
x
+
lo
g
10
(
1
+
2
x
)
=
x
lo
g
10
5
+
lo
g
10
6
then the value of
x
is
1816
232
WBJEE
WBJEE 2018
Report Error
A
2
1
0%
B
3
1
0%
C
1
60%
D
2
40%
Solution:
We have,
x
+
lo
g
10
(
1
+
2
x
)
=
x
lo
g
10
5
+
lo
g
10
6
⇒
lo
g
10
(
1
+
2
x
)
=
x
lo
g
10
5
+
lo
g
10
6
−
x
=
lo
g
10
5
x
+
lo
g
10
6
−
x
lo
g
10
10
=
lo
g
10
(
5
x
⋅
6
)
−
lo
g
10
1
0
x
⇒
lo
g
10
(
1
+
2
x
)
=
lo
g
10
(
1
0
x
5
x
⋅
6
)
⇒
1
+
2
x
=
1
0
x
5
x
⋅
6
=
2
x
6
⇒
2
x
(
1
+
2
x
)
=
6
⇒
t
(
1
+
t
)
=
6
(
let
2
x
=
t
)
⇒
(
t
+
3
)
(
t
−
2
)
=
0
t
+
3
=
0
or
t
−
2
=
0
⇒
t
=
2
[
∵
neglect
t
=
3
]
⇒
2
x
=
2
⇒
x
=
1