x+iy=2+cosθ+isinθ3 =(2+cosθ)2+sin2θ3(2+cosθ−isinθ) =4+cos2θ+4cosθ+sin2θ6+3cosθ−3isinθ =5+4cosθ6+3cosθ−3isinθ =(5+4cosθ6+3cosθ)+i(5+4cosθ−3sinθ)
On equating real and imaginary parts, we get x=5+4cosθ3(2+cosθ)
and y=5+4cosθ−3sinθ ∴x2+y2=(5+4cosθ)29[4+cos2θ+4cosθ+sin2θ] [4+cos2θ+4cosθ+sin2θ] =5+4cosθ9=4(5+4cos2θ6+3cosθ)−3 =4x−3