Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [x] is the greatest integer le x, then the value of the integral ∫ limits0.9-0.9([x2]+((2-x/2+x)))dx is
Q. If
[
x
]
is the greatest integer
≤
x
,
then the value of the integral
−
0.9
∫
0.9
(
[
x
2
]
+
(
2
+
x
2
−
x
)
)
d
x
is
2706
194
AIEEE
AIEEE 2012
Integrals
Report Error
A
0.486
11%
B
0.243
0%
C
1.8
5%
D
0
84%
Solution:
−
0.9
∫
0.9
{
[
x
2
]
+
(
2
+
x
2
−
x
)
}
d
x
=
−
0.9
∫
0.9
[
x
2
]
d
x
+
−
0.9
∫
0.9
l
o
g
(
2
+
x
2
−
x
)
d
x
=
0
+
−
0.9
∫
0.9
l
o
g
(
2
+
x
2
−
x
)
d
x
Put
x
=
−
x
⇒
f
(
x
)
=
l
o
g
2
+
x
2
−
x
and
f
(
−
x
)
=
l
o
g
2
+
x
2
−
x
=
−
l
o
g
2
+
x
(
2
−
x
)
=
−
f
(
x
)
So, it is an odd function, hence Required integral = 0.