Q.
If ' x ' is real, then x2+x+2cx2−x+c can take all real values if :
804
160
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let y=x2+x+2cx2−x+c;x∈R and y∈R. ⇒(y−1)x2+(y+1)x+2yc−c=0 ∵x∈R ⇒D≥0 ⇒(y+1)2−4c(y−1)(2y−1)≥0 ⇒y2+1+2y−4c[2y2−3y+1]≥0 ⇒(1−8c)y2+(2+12c)y+1−4c≥0........(1)
Now for all y∈R(1) will be true if 1−8c>0⇒c<81 and D≤0 ⇒4(1+6c)2−4(1−8c)(1−4c)≤0 ⇒1+36c2+12c−1−32c2+12c≤0 ⇒4c2+24c≤0 ⇒−6≤c≤0
But c=−6 and c=0 will not satisfy given condition ∴c∈(−6,0)