Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x is real, then the range of (x2 + 2x + 1/x2 + 2x + 7) is
Q. If
x
is real, then the range of
x
2
+
2
x
+
7
x
2
+
2
x
+
1
is
3084
219
AP EAMCET
AP EAMCET 2018
Report Error
A
[0, 1)
B
(
−
∞
,
0
)
∪
(
1
,
∞
)
C
(0,1)
D
R
Solution:
Let
x
2
+
2
x
+
7
x
2
+
2
x
+
1
=
y
,
∵
y
=
1
...(i)
⇒
(
y
−
1
)
x
2
+
2
(
y
−
1
)
x
+
(
7
y
−
1
)
=
0
∵
x
∈
R
so,
D
≥
0
⇒
4
(
y
−
1
)
2
−
4
(
y
−
1
)
(
7
y
−
1
)
≥
0
→
(
y
−
1
)
[
y
−
1
−
7
y
+
1
]
≥
0
⇒
y
(
y
−
1
)
≤
0
...(ii)
⇒
y
∈
[
0
,
1
]
From Eqs. (i) and (ii), we are getting
y
∈
[
0
,
1
)