Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x is real, the maximum value of (3x2 + 9x + 17/3x2 + 9x + 7) is
Q. If x is real, the maximum value of
3
x
2
+
9
x
+
7
3
x
2
+
9
x
+
17
is
6524
246
AIEEE
AIEEE 2006
Complex Numbers and Quadratic Equations
Report Error
A
4
1
10%
B
41
36%
C
1
17%
D
7
17
37%
Solution:
y
=
3
x
2
+
9
x
+
7
3
x
2
+
9
x
+
17
3
x
2
(
y
−
1
)
+
9
x
(
y
−
1
)
+
7
y
−
17
=
0
D
≥
0
∵
x
is real
81
(
y
−
1
)
2
−
4
×
3
(
y
−
1
)
(
7
y
−
17
)
≥
0
⇒
(
y
−
1
)
(
y
−
41
)
≤
0
⇒
1
≤
y
≤
41
∴
Max value of
y
is
41