Let y=x2+2x+3x2+14x+9 ⇒x2y+2xy+3y=x2+14x+9 ⇒x2(y−1)+2x(y−7)+3y−9=0
Here, x∈R ∴4(y−7)2−4(y−1)(3y−9)≥0 (y−7)2−(3y2−12y+9)≥0 y2−14y+49−3y2+12y−9≥0 ⇒2y2+2y−40≤0 ⇒y2+y−20≤0(y+5)(y−4)≤0 ∴y∈[−5,4]
Maximum and minimum value of x2+2x+3x2+14x+9 are 4 and −5 respectively.