Given, x is a cube root of unity other than 1 i.e. x=ω or ω2
Now, (x+x1)2+(x2+x21)2+…+(x12+x121)2 =(ω+ω1)2+(ω2+ω21)2+…+(ω12+ω121)2 =(ω+ω1)2+(ω2+ω21)2+…+(ω11+ω111)2 =(ω+ω2)2+(ω2+ω)2+(1+1)2+(ω+ω2)2 +(ω2+ω)2+(1+1)2+(ω+ω2)2 =8(ω+ω2)2+4(1+1)2 =8(−1)2+4(2)2=8+16=24