Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x is a complex root of the equation | beginmatrix1&x&x x&1&x x&x&1 endmatrix|+| beginmatrix1-x&1&1 1&1-x&1 1&1&1-x endmatrix|=0 , then x2007+ x-2007=
Q. If
x
is a complex root of the equation
∣
∣
1
x
x
x
1
x
x
x
1
∣
∣
+
∣
∣
1
−
x
1
1
1
1
−
x
1
1
1
1
−
x
∣
∣
=
0
, then
x
2007
+
x
−
2007
=
5287
180
Determinants
Report Error
A
1
26%
B
−
1
22%
C
−
2
18%
D
2
34%
Solution:
Expanding the two determinants, we get
(
1
−
3
x
2
+
2
x
3
)
+
(
3
x
2
−
x
3
)
=
0
⇒
x
3
+
1
=
0
⇒
x
=
−
ω
,
−
ω
2
,
−
1
x
2007
+
x
−
2007
=
−
1
−
1
=
−
2
.