Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x= ∫ limitsy0 (dt/√1+t2), then (d2y/dx2) is equal to:
Q. If
x
=
0
∫
y
1
+
t
2
d
t
, then
d
x
2
d
2
y
is equal to:
5161
236
JEE Main
JEE Main 2013
Integrals
Report Error
A
y
34%
B
1
+
y
2
19%
C
1
+
y
2
x
44%
D
y
2
3%
Solution:
x
=
0
∫
y
1
+
t
2
d
t
⇒
1
+
y
2
1
.
d
x
d
y
[
∵
I
f
I
(
x
)
=
ϕ
(
x
)
∫
ψ
(
x
)
f
(
t
)
d
t
,
t
h
e
n
d
x
d
I
(
x
)
=
f
{
ψ
(
x
)
}
.
{
d
x
d
ψ
(
x
)
}
−
f
{
ϕ
(
x
)
}
.
{
d
x
d
ϕ
(
x
)
}
]
d
x
d
y
=
1
−
y
2
⇒
d
x
2
d
2
y
=
2
1
+
y
2
1
.2
y
.
d
x
d
y
=
1
+
y
2
y
.
1
+
y
2
=
y