Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x ∈(-π, π) such that y=1+| cos x|+| cos 2 x|+ | cos 3 x|+ ldots . and 8y=64, then the number of values of x satisfying the equations is :
Q. If
x
∈
(
−
π
,
π
)
such that
y
=
1
+
∣
cos
x
∣
+
∣
∣
cos
2
x
∣
∣
+
∣
∣
cos
3
x
∣
∣
+
…
.
and
8
y
=
64
, then the number of values of x satisfying the equations is :
1693
187
Trigonometric Functions
Report Error
A
1
B
2
C
3
D
4
Solution:
Here series is in G.P.
a
=
1
,
r
=
∣
cos
x
∣
∴
y
=
1
−
∣
c
o
s
x
∣
1
⇒
8
1
−
∣
c
o
s
x
∣
1
=
64
=
8
2
⇒
1
−
∣
cos
x
∣
=
2
1
⇒
∣
cos
x
∣
=
2
1
⇒
cos
x
=
±
2
1
⇒
x
=
±
6
π
,
±
6
5
π