Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x ∈ 1,2,3 ,..., 9 and fn(x) =x x x ...x (n digits), then f2n (3)+fn(2) =
Q. If
x
∈
{
1
,
2
,
3
,
...
,
9
}
and
f
n
(
x
)
=
x
x
x
...
x
(
n
digits), then
f
n
2
(
3
)
+
f
n
(
2
)
=
2108
216
Principle of Mathematical Induction
Report Error
A
2
f
2
n
(
1
)
B
f
n
2
(
1
)
C
f
2
n
(
1
)
D
−
f
2
n
(
4
)
Solution:
f
n
(
3
)
=
333....3
(n digits) and
f
n
(
3
)
=
999...9
(n digits),
f
n
2
(
2
)
=
222...2
(n digits)
∴
f
n
2
(
3
)
+
f
n
(
2
)
=
12...2221
((
n
+
1
)
digits)
Answer cannot be (1), (3) or (4)
f
n
(
1
)
=
111...1
(n digits)
∴
f
n
2
(
3
)
(
1
)
=
122...21
((
n
+
1
)
digits).