2951
224
Continuity and Differentiability
Report Error
Solution:
Given that, x=exp{tan−1(x2y−x2)}
Taking log on both sides, we get logx=tan−1(x2y−x2) ⇒x2y−x2=tan(logx) ⇒y=x2tan(logx)+x2
Differentiating w.r.t. x, we get dxdy=2xtan(logx)+x2xsec2(logx)+2x ⇒dxdy=2x[1+tan(logx)]+xsec2(logx)