Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If [x] denotes the greatest integer function, then the domain of the function f(x)=√(x-[x]/ log (x2-x)), is
Q. If
[
x
]
denotes the greatest integer function, then the domain of the function
f
(
x
)
=
l
o
g
(
x
2
−
x
)
x
−
[
x
]
, is
2877
222
TS EAMCET 2019
Report Error
A
(
1
,
∞
)
B
(
1
,
∞
)
−
Z
C
R
−
[
2
1
−
5
,
2
1
+
5
]
D
[
2
1
−
5
,
2
5
+
1
]
Solution:
We have,
f
(
x
)
=
l
o
g
(
x
2
−
x
)
x
−
[
x
]
It is defined
lo
g
(
x
2
−
x
)
>
0
[
∵
x
−
[
x
]
=
[
x
]
≥
0
,
∀
x
∈
R
]
⇒
x
2
−
x
>
1
⇒
x
2
−
x
−
1
>
0
∵
x
2
−
x
−
1
=
0
⇒
x
=
2
1
±
5
∴
x
∈
(
−
∞
,
2
1
−
5
)
∪
(
2
1
+
5
,
∞
)
∴
Domain of
f
(
x
)
=
R
−
[
2
1
−
5
,
2
1
+
5
]