Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x denotes the fractional part of x, then displaystyle limx→[a] (e x - x -1/ x 2), where [a] denotes the integral part of a, is equal to
Q. If {
x
} denotes the fractional part of x, then
x
→
[
a
]
lim
{
x
}
2
e
{
x
}
−
{
x
}
−
1
,
where [a] denotes the integral part of a, is equal to
1359
197
Limits and Derivatives
Report Error
A
0
16%
B
2
1
55%
C
e
−
2
16%
D
None of these
12%
Solution:
Let
[
a
]
=
n
, then
x
→
n
−
lim
{
x
}
2
e
{
x
}
−
{
x
}
−
1
=
h
→
0
lim
{
n
−
h
}
2
e
{
n
−
h
}
−
{
n
−
h
}
−
1
=
h
→
0
lim
(
1
−
h
)
2
e
1
−
h
−
(
1
−
h
)
−
1
=
e
−
2
and
x
→
n
+
lim
{
x
}
2
e
{
x
}
−
{
x
}
−
1
=
h
→
0
lim
{
n
+
h
}
2
e
{
n
−
h
}
−
{
n
+
h
}
−
1
=
h
→
0
lim
h
2
e
h
−
h
−
1
=
h
→
0
lim
h
2
1
+
h
+
2
!
h
2
+
3
!
h
3
+
....
−
h
−
1
=
2
1
∴
Limit does not exist.