Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x= cos t and y= ln t then the value of ( d 2 y / dx 2)+(( dy / dx ))2 at t =(π/2) is equal to
Q. If
x
=
cos
t
and
y
=
ln
t
then the value of
d
x
2
d
2
y
+
(
d
x
d
y
)
2
at
t
=
2
π
is equal to
681
93
Continuity and Differentiability
Report Error
A
-1
B
0
C
1
D
2
Solution:
x
=
cos
t
d
t
d
x
=
−
sin
t
y
=
ln
t
d
t
d
y
=
t
1
d
x
d
y
=
t
s
i
n
t
−
1
⇒
(
d
x
d
y
)
t
=
π
/2
2
=
π
2
4
d
x
2
d
2
y
=
d
x
d
(
t
s
i
n
t
−
1
)
=
d
t
d
(
t
s
i
n
t
−
1
)
d
x
d
t
=
(
t
s
i
n
t
)
2
1
(
t
cos
t
+
sin
t
)
(
s
i
n
t
−
1
)
d
x
2
d
2
y
=
t
2
s
i
n
3
t
−
t
c
o
s
t
−
s
i
n
t
d
x
2
d
2
y
∣
∣
t
=
π
/2
=
π
2
−
4
d
x
2
d
2
y
+
(
d
x
d
y
)
2
=
0
.