x=cos2θ−2cos22θ+3cos32θ……∞ x(1+cos2θ)=cos2θ−cos22θ+cos32θ……∞−xcos2θ=−cos22θ+2cos32θ+……∞ =1+cos2θcos2θ ∴x=(1+cos2θ)2cos2θ Similarly, y=(1−cos2θ)2cos2θ ∴x1+y1=cos2θ(1+cos2θ)2+(1−cos2θ)2=cos2θ2(1+cos22θ)=2(sec2θ+cos2θ) x1+y1>4 ∴ least integral value of x1+y1 is 5