Q.
$\text { If } \quad x=\cos 2 \theta-2 \cos ^2 2 \theta+3 \cos ^3 2 \theta-4 \cos ^4 2 \theta+\ldots \ldots \infty $
$\text { and } y=\cos 2 \theta+2 \cos ^2 2 \theta+3 \cos ^3 2 \theta+4 \cos ^4 2 \theta+\ldots \ldots \infty $
$\text { where } \theta \in\left(0, \frac{\pi}{4}\right) \text {, then find least integral value of }\left(\frac{1}{x}+\frac{1}{y}\right)$ .
Sequences and Series
Solution: