Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If X and Y are two events such that P (X | Y )=(1/2), P(X | Y)=(1/3.) and P(X ∩ Y)(1/6) Then, which of the following is/are correct?
Q. If
X
and
Y
are two events such that
P
(
X
∣
Y
)
=
2
1
,
P
(
X
∣
Y
)
=
3.
1
an
d
P
(
X
∩
Y
)
6
1
Then, which of the following is/are correct?
3361
210
IIT JEE
IIT JEE 2012
Probability - Part 2
Report Error
A
P
(
X
∪
Y
)
=
3
2
26%
B
X
and
Y
are independent
26%
C
X
and
Y
are not independent
38%
D
P
(
X
c
∩
Y
)
=
3
1
9%
Solution:
PLAN
(i) Conditional probability, i.e.
P
(
A
/
B
)
=
P
(
B
)
P
(
A
∩
B
)
(ii)
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
∪
B
)
(iii) Independent event, then
P
(
A
∩
B
)
=
P
(
A
)
−
P
(
B
)
Here,
P
(
X
/
Y
)
=
2
1
,
P
(
X
Y
)
=
3
1
and
P
(
X
∩
Y
)
=
6
∴
P
(
y
x
)
=
P
(
Y
)
P
(
X
∩
Y
)
⇒
2
1
=
P
(
Y
)
1/6
⇒
P
(
Y
)
=
3
1
....( i)
P
(
X
Y
)
=
3
1
⇒
P
(
X
)
P
(
X
∩
Y
)
=
3
1
⇒
6
1
=
3
1
P
(
X
)
∴
P
(
X
)
=
2
1
...(ii)
P
(
X
∪
Y
)
=
P
(
X
)
+
P
(
Y
)
−
P
(
X
∩
Y
)
=
2
1
+
3
1
−
6
1
=
3
2
...(iii)
P
(
X
∩
Y
)
=
6
1
and
P
(
X
)
.
P
(
Y
)
=
2
1
.
3
1
=
6
1
⇒
P
(
X
∩
Y
)
=
P
(
X
)
.
P
(
Y
)
i.e. independent events
∴
P
(
X
c
∩
Y
)
=
P
(
Y
)
−
P
(
X
∩
Y
)
3
1
−
6
1
=
6
1