LHS=12sinx+5cosx∈[−122+52,122+52]
i.e. [−13,13] i.e.
maximum value of LHS is 13 RHS=2(y2−4y+4)+13 =2(y−2)2+13 RHS≥13
Roots of the equation exist if LHS=RHS=13. RHS=13 when y=2 LHS=13⇒12sinx+5cosx=13 ⇒1312sinx+135cosx=1 sin(x+α)=1, where tanα=125 x+tan−1125=2π⇒x=2π−tan−1125 ⇒xy=π−2tan−1125⇒125=tan(2π−2xy)=cot(2xy) ⇒12cot(2xy)=5