Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x and y are positive integers satisfying tan -1((1/x))+ tan -1((1/y))= tan -1((1/7)), then the number of ordered pairs of (x, y) is
Q. If
x
and
y
are positive integers satisfying
tan
−
1
(
x
1
)
+
tan
−
1
(
y
1
)
=
tan
−
1
(
7
1
)
, then the number of ordered pairs of
(
x
,
y
)
is
207
155
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
6
Solution:
Given equation is,
tan
−
1
(
x
1
)
+
tan
−
1
(
y
1
)
=
tan
−
1
(
7
1
)
Using
tan
−
1
A
+
tan
−
1
B
=
tan
−
1
(
1
−
A
B
A
+
B
)
, we get,
⇒
tan
−
1
(
1
−
x
y
1
x
1
+
y
1
)
=
tan
−
1
(
7
1
)
⇒
x
y
−
1
x
+
y
=
7
1
⇒
7
x
+
7
y
=
x
y
−
1
⇒
(
y
−
7
)
x
=
7
y
+
1
⇒
x
=
y
−
7
7
y
+
1
=
7
+
y
−
7
50
Here,
y
=
8
,
9
,
12
,
17
,
32
,
57
satisfy above equation.