Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x/a)+(y/b)=√2 touches the ellipse (x2/a2)+(y2/b2)=1, then its eccentric angle θ is equal to
Q. If
a
x
+
b
y
=
2
touches the ellipse
a
2
x
2
+
b
2
y
2
=
1
, then its eccentric angle
θ
is equal to
2424
243
Conic Sections
Report Error
A
$0$
B
9
0
∘
C
4
5
∘
D
6
0
∘
Solution:
Equation of any tangent to the ellipse
a
2
x
2
+
b
2
y
2
=
1
is
a
x
cos
θ
+
b
y
sin
θ
=
1...
(1)
Also,
a
x
+
b
y
=
2
touches the given ellipse.
Comparing coefficients in (1) and (2), we get
1/
a
c
o
s
θ
/
a
=
1/
b
s
i
n
θ
/
b
=
2
1
⇒
cos
θ
=
2
1
=
sin
θ
∴
θ
=
4
5
∘