Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x= a( cos θ +θ sin θ) and y = a ( sin θ- θ cos θ ) where 0 < θ < (π/2) , then (d2y/dx2) at θ = (π/4) is equal to
Q. If
x
=
a
(
cos
θ
+
θ
sin
θ
)
and
y
=
a
(
sin
θ
−
θ
cos
θ
)
where
0
<
θ
<
2
π
, then
d
x
2
d
2
y
at
θ
=
4
π
is equal to
6374
225
COMEDK
COMEDK 2010
Continuity and Differentiability
Report Error
A
aπ
8
2
37%
B
aπ
4
2
20%
C
aπ
2
4
6%
D
n
o
n
e
o
f
t
h
ese
36%
Solution:
We have,
x
−
a
(
cos
θ
+
θ
sin
θ
)
y
=
a
(
sin
θ
−
cos
θ
)
,
0
<
θ
<
2
π
Differentiating w.r.t. 0, we get
d
θ
d
x
=
a
(
−
sin
θ
+
cos
θ
+
θ
sin
θ
)
=
a
θ
cos
θ
d
θ
d
y
=
a
(
cos
θ
−
cos
θ
+
θ
sin
θ
)
=
a
θ
sin
θ
d
x
d
y
=
d
x
d
θ
d
y
d
θ
=
a
θ
c
o
s
θ
a
θ
s
i
n
θ
=
tan
θ
Now,
d
x
2
d
2
y
=
d
x
d
(
tan
θ
)
=
sec
2
θ
.
d
x
d
θ
=
sec
2
θ
a
θ
c
o
s
θ
1
=
a
θ
s
e
c
3
θ
d
x
2
d
2
y
θ
=
π
4
=
a
(
4
π
)
(
s
e
c
4
π
)
3
=
aπ
4
(
2
)
3
=
aπ
8
2