Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=a[ cos t+(1/2) log ( tan 2 (t/2))] and y=a sin t, then find (d y/d x) at t=(π/4).
Q. If
x
=
a
[
cos
t
+
2
1
lo
g
(
tan
2
2
t
)
]
and
y
=
a
sin
t
, then find
d
x
d
y
at
t
=
4
π
.
142
150
Limits and Derivatives
Report Error
Answer:
1
Solution:
x
=
a
[
cos
t
+
2
1
lo
g
(
tan
2
2
t
)
]
⇒
x
=
a
[
cos
t
+
lo
g
(
tan
2
t
)
]
⇒
d
t
d
x
=
a
(
−
sin
t
+
t
a
n
2
t
1
⋅
sec
2
2
t
⋅
2
1
)
=
a
(
−
sin
t
+
2
s
i
n
2
t
c
o
s
2
t
1
)
=
a
(
−
sin
t
+
s
i
n
t
1
)
=
a
(
s
i
n
t
1
−
s
i
n
2
t
)
=
a
(
s
i
n
t
c
o
s
2
t
)
y
=
a
sin
t
⇒
d
t
d
y
=
a
cos
t
⇒
d
x
d
y
=
d
t
d
x
d
t
d
y
=
s
i
n
t
a
c
o
s
2
t
a
c
o
s
t
=
tan
t
⇒
(
d
x
d
y
)
t
=
4
π
=
tan
4
π
=
1