1769
254
Continuity and Differentiability
Report Error
Solution:
Given that, x=acos4θ and y=asin4θ
On differentiating w.r.t θ, we get dθdx=4acos3θ(−sinθ) and dθdy=4asin3θcosθ ∴dxdy=dθdxdθdy=−4acos3θsinθ4asin3θcosθ=−cos2θsin2θ=−tan2θ
Now, (dxdy)θ=43π=−tan2(43π)=−1