Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = a Cos 3 θ and y= a Sin3 θ then (dy/dx)=
Q. If
x
=
a
C
o
s
3
θ
and
y
=
a
S
i
n
3
θ
then
d
x
d
y
=_________
2866
198
KCET
KCET 2010
Continuity and Differentiability
Report Error
A
−
3
y
x
12%
B
−
3
x
y
38%
C
3
x
y
36%
D
3
y
x
13%
Solution:
If
x
=
a
cos
3
θ
and
y
=
a
sin
3
θ
⇒
d
θ
d
x
=
3
a
cos
2
θ
(
−
sin
θ
)
⇒
d
θ
d
y
=
3
a
sin
2
θ
(
cos
θ
)
⇒
d
x
d
y
=
d
θ
d
y
×
d
x
d
θ
=
(
3
a
sin
2
θ
⋅
cos
θ
)
⋅
−
(
3
a
s
i
n
θ
⋅
c
o
s
2
θ
)
1
d
x
d
y
=
−
c
o
s
θ
s
i
n
θ
,
d
x
d
y
=
−
tan
θ
⇒
d
x
d
y
=
−
(
x
/
a
)
1/3
(
y
/
a
)
−
1/3
=
−
[
a
y
×
x
a
]
1/3
d
x
d
y
=
−
(
x
y
)
−
1/3
=
−
3
x
y