Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=a+b+c, y=a α+b β+c and z=a β+b α+c, where α and β are complex cube roots of unity, then x y z=
Q. If
x
=
a
+
b
+
c
,
y
=
a
α
+
b
β
+
c
and
z
=
a
β
+
b
α
+
c
, where
α
and
β
are complex cube roots of unity, then
x
yz
=
490
152
Complex Numbers and Quadratic Equations
Report Error
A
2
(
a
3
+
b
3
+
c
3
)
B
2
(
a
3
−
b
3
−
c
3
)
C
a
3
+
b
3
+
c
3
−
3
ab
c
D
a
3
−
b
3
−
c
3
Solution:
x
=
a
+
b
+
c
,
y
=
aω
+
b
ω
2
+
c
,
z
=
a
ω
2
+
bω
+
c
yz
=
(
aω
+
b
ω
2
+
c
)
(
a
ω
2
+
bω
+
c
)
=
a
2
+
b
2
+
c
2
+
ab
(
ω
4
+
ω
2
)
+
b
c
(
ω
2
+
ω
)
+
c
a
(
ω
2
+
ω
)
=
a
2
+
b
2
+
c
2
+
ab
(
ω
2
+
ω
)
+
b
c
(
ω
2
+
ω
)
+
c
a
(
ω
2
+
ω
)
=
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
{
ω
2
+
ω
+
1
=
0
}
x
yz
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
)
=
a
3
+
b
3
+
c
3
−
3
ab
c