Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = -9 is a root of A = | x 3 7 2 x 2 7 6 x | = 0, then other two root are
Q. If x = -9 is a root of A =
∣
∣
x
2
7
3
x
6
7
2
x
∣
∣
= 0, then other two root are
1841
229
VITEEE
VITEEE 2006
Report Error
A
3,7
B
2,7
C
3,6
D
2,6
Solution:
GivenA =
∣
∣
x
2
7
3
x
6
7
2
x
∣
∣
= 0
⇒
x[x
2
- 12] - 3[2x- 14] + 7[12 - 7x] = 0
⇒
x
3
- 67x + 126 = 0
But given (x = 9) is a root of given determinant
∴
(
x
+
9
)
is a factor
⇒
x
3
+
9
x
2
−
9
x
2
−
81x + 14x + 126 = 0
⇒
x
2
(x + 9) - 9x(x + 9) + 14(x + 9) = 0
⇒
(
x
+
9
)
(
x
2
-9x +14)=0
⇒
(
x
+
9
)
(
x
2
-7x -2x+14)=0
⇒
(x + 9) (x - 7) (x - 2) = 0
⇒
x
=
−
9
,
7
,
2