Given, X={8n−7n−1:n∈N} and Y={49n−49:n∈N}
Now, 8n−7n−1=(7+1)n−7n−1 =7n+nC17n−1+nC27n−2+...+nCn−272 +nCn−17+nCn−7n−1
[∵ by binomial expansion, (x+1)n=xn+nC1xn−1 +nC2xn−2+...+nCn−2x2+nCn−1x+nCn] =nCn7n+nC17n−1+nC27n−2+...+nC272+7n+1−7n−1 (∵nCn=nC0=1,nCn−1=nC1=n,nCn−2=nC2) =7nnCn+nC17n−1+nC27n−2+...+nC272 =nC272+...+nC27n−2+nC17n−1+nCn7n =72[nC2+...+nCn7n−2] =49[nC2+...+nCn7n−2] ∴8n−7n−1 is a multiple of 49 for n≥2
For n=1,8n−7n−1=8−8=0 ∴8n−7n−1 is a multiple of 49 for all n∈N. X contains elements which are multiples of 49 and clearly Y contains all multiples of 49. ∴X⊂Y