If is given that (x−a)(x−b)(x−c)x4=P(x)+x−aA+x−bB+x−cC ⇒x4=(x−a)(x−b)(x−c)P(x)+A(x−b)(x−c)+B(x−c)(x−a)+C((x−a)(x−b)
At x=0,abcP(0)=bcA+caB+abC P(0)=aA+bB+aC...(i)
At x=a,A=(a−b)(a−c)a4, similarly
At x=b,B=(b−c)(b−a)b4 and
At x=c,c=(c−a)(c−b)c4...(ii)
So, P(0)=(a−b)(a−c)a3+(b−c)(b−a)b3+(c−a)(c−b)c3 =(a−b)(b−c)(c−a)a3(c−b)+b3(a−c)+c3(b−a) =(a−b)(b−c)(c−a)a3(c−b)+bc(c2−b2)+a(b3−c3) =(a−b(a−c)a3+bc(c+b)−a(b2+c2+bc) =(a−b)(a−c)a(a2−b2)−c2(a−b)−bc(a−b) =(a−c)(a2+ba)−c2−bc=a+b+c
So, P(0)+(a−b)(a−c)A=a+b+c+a4