∣∣x−42x2x2xx−42x2x2xx−4∣∣=(A+Bx)(x−A)2
Put x=0⇒∣∣−4000−4000−4∣∣=A3⇒A=−4 ∣∣x−42x2x2xx−42x2x2xx−4∣∣=(Bx−4)(x+4)2 ∣∣1−x42221−x42221−x4∣∣=(B−x4)(1+x4)2
Put x→∈fty⇒∣∣122212221∣∣=B
On expanding the determinant along the first row, we get B=5 .