x3+y3=t+t4 x6+y6+2x3y3=t2+t216+8 ...[By squaring both the sides] ⇒(t2+t216)+2x3y3=t2+t216+8 ⇒x3y3=4 ...(i)
Differentiating with respect to x, we get x3(3y2dxdy)+y3⋅(3x2)=0 ⇒3x3y2dxdy=−3x2y3 ⇒x3y2dxdy=−x2y3 ⇒x4y2dxdy=−x3y3 ⇒x4y2dxdy=−4 ...[From (i)]