x3dy+xydx=x2dy+2ydx ⇒dy(x3−x2)=dx(2y−xy) ⇒−∫y1dy=∫x2(x−1)x−2dx ⇒−ℓny=∫(xA+x2B+(x−1)C)dx
Where A=1,B=+2,C=−1 ⇒−ℓny=lnx−x2−ln(x−1)+λ ⇒y(2)=e ⇒−1=ln2−1−0+λ ∴λ=−ln2 ⇒ℓny=−lnx+x2+ln(x−1)+ln2
Now put x=4 in equation ⇒ℓny=−ln4+21+ln3+ln2 ⇒ℓny=ln(23)+21ℓne ⇒y=23e