x=4⋅83+4⋅8⋅123⋅5+4⋅8⋅12⋅163⋅5⋅7+…….
Let, (1+y)n=1+ny+2!n(n−1)y2+3!n(n−1)(n−2)+4!n(n−1)(n−2)(n−3)y4+….
If we compare with third term on words, the 2!n(n−1)y2=1.83,n!n(n−1)(n−2) y3=4⋅8⋅123⋅5
and 4!n(n−1)(n−2)(n−3)y4 =4⋅8⋅12⋅163⋅5⋅7
On solving, we are getting. So, x=(1+y)n−1−ny=(1−21)−1/2−1−(−21)(2−1) ⇒2−1−41=2−45
Now, 2x2={2+1625−25]=4+825−52
and 5x=52−425
So, 2x2+5x=4+825−52+52−425 =832+25−50=87