Given, x=103+10⋅153⋅7+10⋅15⋅203⋅7⋅9+… x=5⋅103⋅5+5⋅10⋅153⋅5⋅7+5⋅10⋅15⋅203⋅5⋅7⋅9+… ∴Tr+1=5r⋅1⋅2⋅3…r3⋅5⋅7…(2r+1) =(52)rr!3/2⋅5/2⋅27…(r+21) =r!(−23)(−23−1)(−23−2)…(−23−r+1)(−52)r
Comparing with general term of (1+x)n,n∈R ∴r!n(n−1)(n−2)…(n−r+1)xr =r!(−23)(−23−1)…(−23−r+1)(−52)r ⇒n=−2′3x=−52 ∴x+58=(1−52)−3/2 =(53)−3/2=(35)3/2 =3355 ⇒55x+8=3355 ⇒5x+8=33255