Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = (3/10) + (3.7/10.15) + (3.7.9/10.15.20) + ...., then 5x + 8 =
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $x = \frac{3}{10} + \frac{3.7}{10.15} + \frac{3.7.9}{10.15.20} + $ ...., then $5x + 8$ =
AP EAMCET
AP EAMCET 2019
A
$\frac{5\sqrt{5}}{3\sqrt{3}} $
B
$\frac{5\sqrt{5}}{\sqrt{3}} $
C
$\frac{3\sqrt{3}}{\sqrt{5}} $
D
$\frac{25\sqrt{5}}{3\sqrt{3}} $
Solution:
Given,
$x=\frac{3}{10}+\frac{3 \cdot 7}{10 \cdot 15}+\frac{3 \cdot 7 \cdot 9}{10 \cdot 15 \cdot 20}+\ldots$
$x=\frac{3 \cdot 5}{5 \cdot 10}+\frac{3 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{5 \cdot 10 \cdot 15 \cdot 20}+\ldots$
$\therefore T_{r+1}=\frac{3 \cdot 5 \cdot 7 \ldots(2 r+1)}{5^{r} \cdot 1 \cdot 2 \cdot 3 \ldots r}$
$=\left(\frac{2}{5}\right)^{r} \frac{3 / 2 \cdot 5 / 2 \cdot \frac{7}{2} \ldots\left(r+\frac{1}{2}\right)}{r !}$
$=\frac{\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right)\left(-\frac{3}{2}-2\right) \ldots\left(-\frac{3}{2}-r+1\right)\left(-\frac{2}{5}\right)^{r}}{r !}$
Comparing with general term of $(1+x)^{n}, n \in R$
$\therefore \frac{n(n-1)(n-2) \ldots(n-r+1) x^{r}}{r !}$
$=\frac{\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right) \ldots\left(-\frac{3}{2}-r+1\right)\left(-\frac{2}{5}\right)^{r}}{r !}$
$\Rightarrow n=-\frac{3}{2'} x=-\frac{2}{5}$
$\therefore x+\frac{8}{5}=\left(1-\frac{2}{5}\right)^{-3 / 2}$
$=\left(\frac{3}{5}\right)^{-3 / 2}=\left(\frac{5}{3}\right)^{3 / 2}$
$=\frac{5 \sqrt{5}}{3 \sqrt{3}}$
$\Rightarrow \frac{5 x+8}{5}=\frac{5 \sqrt{5}}{3 \sqrt{3}} $
$\Rightarrow 5 x+8=\frac{25 \sqrt{5}}{3 \sqrt{3}}$