Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=(2at/1+t3) and y=(2at2/(1+t3)2) then (dy/dx) is
Q. If
x
=
1
+
t
3
2
a
t
and
y
=
(
1
+
t
3
)
2
2
a
t
2
then
d
x
d
y
is
4666
176
KEAM
KEAM 2007
Continuity and Differentiability
Report Error
A
a
x
6%
B
a
2
x
2
16%
C
a
x
56%
D
2
a
x
16%
E
x
2
a
16%
Solution:
∵
x
=
1
+
t
3
2
a
t
and
y
=
(
1
+
t
3
)
2
2
a
t
2
⇒
y
=
2
a
(
1
+
t
3
t
)
2
=
2
a
.
(
2
a
)
2
x
2
⇒
y
=
2
a
x
2
On differentiating w.r.t.
x
,
we get
d
x
d
y
=
2
a
2
x
=
a
x