Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=t+(2/t) and x4+y4=t2+(4/t2), then x3 y (d y/d x) equals
Q. If
x
2
+
y
2
=
t
+
t
2
and
x
4
+
y
4
=
t
2
+
t
2
4
, then
x
3
y
d
x
d
y
equals
1965
239
TS EAMCET 2015
Report Error
A
-1
B
-2
C
x
y
D
x y
Solution:
We have,
x
2
+
y
2
=
t
+
t
2
and
x
4
+
y
4
=
t
2
+
t
2
4
Now,
x
2
+
y
2
=
t
+
t
2
On squaring both sides, we get
x
4
+
y
4
+
2
x
2
y
2
=
t
2
+
t
2
4
+
4
⇒
x
4
+
y
4
+
2
x
2
y
2
=
x
4
+
y
4
+
4
⇒
2
x
2
y
2
=
4
⇒
x
2
y
2
=
2
⇒
y
2
=
x
2
2
Now, differentiating both sides w.r.t.
x
, we get
2
y
d
x
d
y
=
x
3
−
4
⇒
x
3
y
d
x
d
y
=
−
2