Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=t-(1/t) and x4+y4=t2+(1/t2), then (dx/dy) is equal to
Q. If
x
2
+
y
2
=
t
−
t
1
and
x
4
+
y
4
=
t
2
+
t
2
1
,
then
d
y
d
x
is equal to
3132
198
KEAM
KEAM 2009
Continuity and Differentiability
Report Error
A
x
2
y
3
1
6%
B
x
y
3
1
10%
C
x
2
y
2
1
19%
D
x
3
y
1
45%
E
x
3
y
−
1
45%
Solution:
Given,
x
2
+
y
2
=
t
−
t
1
and
x
4
+
y
4
=
t
2
+
t
2
1
⇒
x
4
+
y
4
+
2
x
2
y
2
=
t
2
+
t
2
1
−
2
⇒
x
4
+
y
4
+
2
x
2
y
2
=
x
2
+
y
4
−
2
⇒
x
2
y
2
+
1
=
0
⇒
y
2
=
x
2
−
1
On differentiating w.r.t.
x
,
we get
2
y
d
x
d
y
=
x
3
2
⇒
d
x
d
y
=
x
3
y
1