Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=R2(R>0) then k=(y prime prime/√(1+y prime 2)3) where k in terms of R alone is equal to
Q. If
x
2
+
y
2
=
R
2
(
R
>
0
)
then
k
=
(
1
+
y
′2
)
3
y
′′
where
k
in terms of
R
alone is equal to
209
100
Continuity and Differentiability
Report Error
A
−
R
2
1
B
−
R
1
C
R
2
D
−
R
2
2
Solution:
2
x
+
2
y
y
′
=
0
x
+
y
y
′
=
0
⇒
y
′
=
−
y
x
…
.
(
1
)
1
+
y
′′
+
(
y
′
)
2
=
0
y
′′
=
−
y
1
+
(
y
′
)
2
now
k
=
(
1
+
(
y
′
)
2
)
3/2
y
′′
=
−
y
(
1
+
(
y
′
)
2
)
3/2
1
+
(
y
′
)
2
=
−
y
1
+
(
y
′
)
2
1
=
−
y
1
+
y
2
x
2
1
=
−
y
2
+
x
2
1
=
−
R
1