Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x2+y2)dy=xy dx, y(1)=1, and y(x0)=e, then x0=
Q. If
(
x
2
+
y
2
)
d
y
=
x
y
d
x
,
y
(
1
)
=
1
, and
y
(
x
0
)
=
e
, then
x
0
=
1693
213
Differential Equations
Report Error
A
2
(
e
2
−
1
)
0%
B
2
(
e
2
+
1
)
0%
C
3
⋅
e
50%
D
2
e
2
+
1
50%
Solution:
We have,
d
x
d
y
=
x
2
+
y
2
x
y
Substitute
y
=
vx
⇒
d
x
d
y
=
d
x
x
d
v
+
v
Now, equation becomes
d
x
x
d
v
+
v
=
1
+
v
2
v
⇒
d
x
x
d
v
=
1
+
v
2
v
−
v
⇒
x
d
x
+
(
v
3
1
+
v
2
)
d
v
=
0
On integration, we get
l
n
x
+
l
n
v
−
2
v
2
1
=
c
⇒
l
n
y
=
2
y
2
x
2
+
c
x
=
1
,
y
=
1
c
=
−
2
1
∴
x
=
x
0
,
y
=
e
⇒
1
=
2
e
2
x
0
2
−
2
1
⇒
x
0
2
=
3
e
2
,
x
0
=
3
⋅
e
.