Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=a2, then ∫ limits0a √1+((d y/d x))2 d x=
Q. If
x
2
+
y
2
=
a
2
, then
0
∫
a
1
+
(
d
x
d
y
)
2
d
x
=
2305
201
WBJEE
WBJEE 2020
Report Error
A
2
π
а
B
π
а
C
2
1
πa
D
4
1
πa
Solution:
y
1
=
−
y
x
0
∫
a
1
+
y
2
x
2
d
x
=
a
0
∫
a
y
1
⋅
d
x
=
a
0
∫
a
a
2
−
x
2
d
x
=
a
[
sin
−
1
(
a
x
)
]
0
a
=
2
aπ