Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=25, then log 5[ max (3 x+4 y)] is
Q. If
x
2
+
y
2
=
25
, then
lo
g
5
[
max
(
3
x
+
4
y
)]
is
1468
209
EAMCET
EAMCET 2015
Report Error
A
2
B
3
C
4
D
5
Solution:
Let
z
=
3
x
+
4
y
⇒
z
=
3
x
+
4
25
−
x
2
[
∵
x
2
+
y
2
=
25
]
∴
z
′
=
3
+
2
25
−
x
2
4
(
−
2
x
)
For maxima,put
z
′
=
0
⇒
3
=
25
−
x
2
4
x
⇒
3
25
−
x
2
=
4
x
⇒
9
(
25
−
x
2
)
=
16
x
2
⇒
9
×
25
−
9
x
2
=
16
x
2
⇒
9
×
25
=
(
16
+
9
)
x
2
⇒
x
2
=
9
∴
x
=
3
,
y
=
4
Now,
z
=
lo
g
5
[(
25
)]
=
lo
g
5
(
5
)
2
=
2
lo
g
5
5
=
2