Q.
If x2+x+1=0, then the value of (x+x1)+(x2+x21)+…+(x52+x521) equals
1703
178
Complex Numbers and Quadratic Equations
Report Error
Solution:
(x+x1)+(x2+x21)+…+(x52+x521) =(x+x2+…+x52)+(x1+x21+…+x521) =x(1+x+x2+…+x51)+x521(1+x+…+x51) =(1+x+x2+…+x51)(x+x521) =1−x1−x52⋅x52x53+1
on putting x=ω, we get =1−ω1−ω52×ω(ω2+1) (∵ω52=ω,1+ω2=−ω) Alternative Solution : (x+x2+…+x52)+(x1+x21+x31+…+x521)
Putting x=ω (ω+ω2+…+ω52)+(ω1+ω21+…+ω521) =ω(1+ω+…+ω51)+ω521(1+ω+…+ω51) =(1+ω+ω2+…+ω51)(ω+ω521) =(1−ω1−ω52)(ω+ω)2=(1−ω1−ω)(−1)=−1 Short Cut Method : 1+x+x2=0 ∴(x−ω)(x−ω2)=0 ∴x=ω,ω2=ω,ω1
Values of each three sets is 0 i.e (x+x1)+(x2+x21)+(x3+x31)=0
There are 52 such sets means value up to 51 sets is 0, we left with the last set i.e. x52+x521=ω52+(ω2)52=ω52+ω104 =ω+ω2=−1 (∵1+ω+ω2=0)