Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2 - x + 1 = 0, then the value of displaystyle∑5n=1 (xn + (1/xn))2
Q. If
x
2
−
x
+
1
=
0
,
then the value of
n
=
1
∑
5
(
x
n
+
x
n
1
)
2
6317
200
COMEDK
COMEDK 2007
Complex Numbers and Quadratic Equations
Report Error
A
10
25%
B
8
35%
C
6
23%
D
4
18%
Solution:
We have,
x
2
−
x
+
1
=
0
x
=
2
1
±
1
−
4
=
2
1
±
2
3
i
i.e.,
x
=
ω
,
ω
2
∴
n
=
1
∑
5
(
x
n
+
x
n
1
)
2
=
n
=
1
∑
5
(
ω
n
+
ω
n
1
)
2
=
n
=
1
∑
5
[
ω
2
n
+
ω
2
n
1
+
2
]
=
5
(
2
)
+
ω
2
+
ω
2
1
+
ω
4
+
ω
4
1
+
ω
6
+
ω
6
1
+
ω
8
+
ω
8
1
+
ω
10
+
ω
10
1
=
10
+
ω
2
ω
4
+
1
+
ω
4
ω
8
+
1
+
ω
6
ω
12
+
1
+
ω
8
ω
16
+
1
+
ω
10
ω
20
+
1
=
10
+
ω
2
ω
+
1
+
ω
ω
2
+
1
+
1
1
+
1
+
ω
2
ω
+
1
+
ω
ω
2
+
1
=
10
−
ω
2
ω
2
=
ω
ω
+
2
−
ω
2
ω
2
−
ω
ω
=
10
−
1
−
1
+
2
−
1
−
1
=
8
.