Q.
If x2+ax+10=0 and x2+bx−10=0 have common roots, then a2−b2 is equal to
2328
204
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, x2+ax+10=0,x2+bx−10=0
Let α be a common root of both the equations
So α2+aα+10=0 and …(i) α2+bα−10=0 or α2=10−bα…(ii)
Putting (ii) in (i), we get (10−bα)+aα+10=0 ⇒α(a−b)=−20
or α=b−a20
Substituting in (i), (b−a)2400+(b−a)20a+10=0 ⇒10(b−a)2+20a(b−a)+400=0 ⇒(b−a)2+2a(b−a)+40=0 ⇒a2+b2−2ab+2ab−2a2+40=0 ⇒b2−a2+40=0 ⇒a2−b2=40.