Q.
If x2+(a−b)x+(1−a−b)=0, where a∈N&b∈R then sum of the first five smallest values of ' a ' for which equation has unequal real roots for all values of ' b ' is equal to
419
115
Complex Numbers and Quadratic Equations
Report Error
Solution:
ΘD>0,∀b∈R ⇒(a−b)2−4.1(1−a−b)>0,∀b∈Rk ⇒b2+(4−2a)b+(a2+4a−4)>0,∀b∈R ∴D′=(4−2a)2−4(a2+4a−4)<0 ⇒16−16a+4a2−4a2−16a+16<0 ⇒32a>32⇒a>1 ∴a=2,3,4,5,6 ∴ sum =20