a2x2+b2y2=1 ...(i)
On differentiating w.r.t. x, we get a22x+b22y.dxdy=0 ⇒dxdy=−a2yxb2 and x2−y2=c2
On differentiating w.r.t. x, we get 2x−2ydxdy=0 ⇒dxdy=yx
The two curves will cut at right angles, if (dxdy)c1×(dxdy)c2=−1 ⇒−a2yb2x.yx=−1 ⇒a2x2=b2y2 ⇒a2x2=b2y2=21 [using eq. (i)]
On substituting these values in x2−y2=c2, we get 2a2−2b2=c2 ⇒a2−b2=2c2