Let the common ratio of the GP be r.
Then, y=xr and z=xr2 ⇒lny=lnx+lnr and lnz=lnx+2lnr
Putting A=1+lnx,D=lnr
Then, 1+lnx1=A1 1+lny1=1+lnxr1 =1+lnx+lnr1=A+D1
and 1+lnz1=1+lnx+2lnr1 =A+2D1
Here we see that A,A+D and A+2D are in AP. ∴A1,A+D1 and A+2D1 are in HP.
Therefore, 1+lnx1,1+lny1,1+lnz1, are in HP.